博客
关于我
谷歌的Deep Search#生成式搜索引擎的进化方向
阅读量:741 次
发布时间:2019-03-22

本文共 299 字,大约阅读时间需要 1 分钟。

谷歌近期发布了一个深度研究助手,旨在提升用户的效率和研究报告生成能力。该助手基于Gemini 2.0 Flash技术,能够提供更强的性能和速度支持。

Gemini 2.0 Flash通过AI技术优化了聊天体验,并显著提升了模型的理解和响应能力。这使得用户能够快速生成高质量的研究报告,快速获取所需信息。系统能够执行深度分析,帮助用户快速浏览和筛选相关信息,显著提升研究效率。

其优势包括:

  • 利用AI进行深度分析,快速筛选相关信息
  • 生成高质量的研究报告,帮助用户快速获取信息
  • 优化聊天体验,提升用户互动效率
  • 通过Gemini 2.0 Flash,用户能够更高效地完成研究任务,充分发挥AI技术的潜力。

    转载地址:http://jwfwk.baihongyu.com/

    你可能感兴趣的文章
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>
    numpy、cv2等操作图片基本操作
    查看>>
    numpy中的argsort的用法
    查看>>
    NumPy中的精度:比较数字时的问题
    查看>>
    numpy判断对应位置是否相等,all、any的使用
    查看>>
    Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy学习笔记3-array切片
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy最大值和最大值索引
    查看>>
    NUMPY矢量化np.prod不能构造具有超过32个操作数的ufunc
    查看>>
    Numpy矩阵与通用函数
    查看>>